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Summary

-- \This thesis describes the design and implementation of a language-

independent reuseable code generator for Prime 400 and 50-Series computers.

A code generator is the portion of a compiler that converts an

internal representation of the semantics of a program into equivalent

machine code. Construction of a code generator requires a major effort, so

it should be tone as infrequently as possible. One way to make this pos-

sible is to build a code generator that may be re-used from compiler to
compiler.

Several factors influence the design of such a code generator,

including the nature of the communications channel between the code

generator and the rest of the compiler, the structure of the information
passed to the code generator (the "intermediate form"), the form of output

code desired, and finally the limitations of the. machine architecture and

existing systems software..-

The code generator implemented processes a high-level, tree-

structured intermediate form, performing translation by case analysis and

optimization by eliminating redundant load operations. It produces a

stream of assembly language source code which may then be assembled,

loaded, and executed.

SExperience with two compiler implementations has shown that the re-
usatle code generator approach is feasible. However, several improvements

in the present code generator would be desirable..-.

Georgia Institute of Technology Re-usable Code Generator
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CHAlPR 1

Introduction

1.1 xAUUWA

The School of Information and Computer Science maintains a network of

five medium-scale Prime computers for both academic and research

activities. Despite the natural growth In "Prime expertise" resulting from

five years of use, there has been no successful local compiler

implementation. The few attempts that have been made were -lymied by

various difficulties in dealing with the machAne architecture and systems

software.

Nevertheless, there are several reasons for undertaking further con-

piler implementation projects on the School's Prime computers:

Both ICS and the Prime-u3ing segment of the business community are

interested in the C programing language [Kernighan 1978J. A wealth

of software exists in the form of C programs; a C compiler on the

Primes would thus enhance theI r usability and effectiveness.

Existing compilers for Prime computers are large programs that

seriously impair system throughput when they are run. For example,

the PL/I subset G compiler processes programs at approximately 500

lines per CPU minute, referencing 384K bytes of shared code and 256K

bytes of private data space. Three concurrent PL/I c~sopilations

cause excessive paging on a Prime 350 with 1.5 megabytes of main

memory, pushing system response time to the point of user

frustration, even for simple operations like logging in. In an

academic environment where compilations are frequent, this is unac-

ceptable. Local replacements for existing compilers could improve

system throughput as well as offer useful new features.

Computer science courses, like those in physics or electrical

engineering, use laboratories to provide students with "hands-on"

experience. ICS majors need access to larbe software systems like

compilers, but commercial compilers are frequently Jnaccessable for

legal reasons. Locally-developed "training compilers" could meet

the need.

Georgia Institute of Technology Re-Usable Code Generator
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Researh projects within the School occasionally require language

translators for special applications. For example, researchers in

the fields of artificial intelligence and fully distributed data

procersing have identified needs for programming languages that are

not implemented on the Primes.

1.2 LmD±LAc Ze i

To see how a re-usable code generator can help to meet the School',s

needs, it is necessary to consider current compiler design practices.

In what has cone to be the "classic" scheme, a compiler is composed

of four parts:

0 The ,evica1 ann~vzAr converts a stream of characters supplied by the

user into higher level "tokens." is process is analogous to the

way a person groups written letters to form words.

* The ta anazer groups the tokens produced by the lexical

analyzer into structures, according to the rules of a grammar. In a

similar vein, a person groups words to form phrases and sentences.

0 The semantic analvzer extracts the "meaning" of the structures

produced by the syntax analyzer. In the case of people, sentences

are "interpreted."

The node generater in a sense inverts the preceding processes: it
synthesizes a sequence of instructions that ý:,eex~s the lexical and

syntactic requirements of a computer's machine language while insur-

ing that the sequence is "semantically equivalent" to the original

program. As with a human translator, it is essential that the code

generator have an excellent command of the language into which it is
translating. Otherwise, there is much less incentive to use a com-

piler; it might be more economical to produce machine code by hand.

The machine instructions produced by the code generator are interpreted by

a computer to perform the task expressed by the original program.

1.3 ZkAUM .
Today, lexical and syntax analysis are well-understood; a large body

of theoretidl results has made it possible to automate the construction of

Georgia Institute of Technology Re-Usable Code Generator
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lexical and syntax analyzers (see for exumple [Aho 1972)). Semantic
analysis is more complex and consequently less well-understood. Code
generation is in a similar state; the best automatic code generation

algorithms are little better than heuristically controlled searches
[Graham, 1980].

For economic reasons, it is desirable to minimize the mount of

"custom-crafted" single-use code in a given compiler implementation. Cco,-
pilers are large, complex pieces of software, and writing one is an

expensive task. However, if portions of a compiler may be re-used in sub-

sequent implementations, the total amortized cost of the compiler can be.

reduced.
In large measure, the lexical, syntax, and semantic analysis

portions of a compiler for language X can be made independent of the

machine on which X is to run. Similarly, the code generation portion of a
compiler can be made largely independent of the language being compiled.
In theory, one would have a single "front end" for each language to be com-
piled, and a single "back end" for each target machine. In this way, a
compiler for any language would be available for any machine; it would only

be necessary to connect the appropriate front end to the proper back end.
This scheme maximizes re-usability of compiler implementation code, thus

minimizing cost. Unfortunately, it is not possible in practice; there are
significant differences between languages and between target machines which
make such an approach infeasible. Ruwever, it is possible to make sub-
stantial progress toward the goal of re-usability with a practical

implementation of a back end for one machine.
A re-usable code generator for Prime hardware is desirable for

another reason. The Prime architecture (relevant aspects of which will be

discussed in more detail below) suffers from a number of shortcomings that
make it inhospitable to high-level language compilers. For example, a num-
ber of operations are simply missing from the instruction set; it is pos-

sib]e to do 32 bit wide logical "and" operations, but there is no 32 bit

logical "or" instruction. The available addressing formats make it neces-
sary to reference separately-compiled objects with indirect addresses, thus
requiring knowledge of external objects at compile time as well as forcing
the use of different addressing techniques. The method of memory segmenta-

Georgia Institute of Technology Re-Usabla Code Generator
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tion is closely connected to the implementation of several instructions,
cavsing array indexing to fail when an array overlaps a boundary between
memory segments. For these and other reasons, code generation for the
Primes is particularly difficult. It seems best to invest the effort in
building a code generator just once, making it re-usable for future comn-
piler implementations.

1. 4 &a

The ICS Prime computer systems support a rnumber of "software tools"

designed to simplify the processes of lexical and syntactic analysis.

Unfortunately, there is no analogous support for code generation.
The central problem of this thesis may be stated as fo.llows: D.!sign

and implement a code generator for Prime computers. The code generator
must present an interface that may be used by a variety of front-end
language and processors. Furthermore, the interface should depend on
features c-f the underlying machine architecture as little as possible.

The code generator should produce instructions that are cormmon to
all the machines in the ICS Computing Laboratory Prime complex. The code
generator should be "fast," at least in comparison to the code generation
phases of ccompilers that are already available. It should produce machine
code programs of high enough quality that there is little temptation to use

an existing compiler or to write programs directly in machine code when
code efficiency is the major issue.

1.5 Ilate ~E~a~ta

A numnber of other efforts have influenced the direction of this

thesis:

The author's senior design project at Georgia Tech (Akin 1979]
involved, among other things, the construction of a compiler for a
microcomputer systems programuing language. The need for identical
source programs to run on two different microcomputers led to the
factoring of the compiler into a machinie independent front end and
two machine dependent back ends. Experience with the interface
between segments of the compiler strongly affected the design of the
interface for the present code generator.

Georgia Institute of Technology Re-Usable Code Generator
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Stephen Johnson's portable C compiler [Johnson 1979) shows a succes-

sful approach to code generation that differs from the one taken in

this project: "pec" uses a machine independent code generator with

tables that are tailored by end-users for particular mchines.
However, Johnson's ideas on code optimization were used in the

current effort without much charge.

The Charrettr- Ada Compiler project [Lamb 1980] provided irsight Into
the problems of developing a truly language-independent intermediate

form (interface between front end and code generator). In the

Charr'ette project, the front end produced a tree-structured

intermediate form known as TCOL-Ada. The success of TCOL-Ada was an

important factor in the decision to use a tree-structured

intermediate form in this project. (Ada is a trademark of the U.

S. Department of Defense.)

I

Georgia Institute of Technology Re-Usable Code Generator
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CHAPTER 2

Design Considerations

The design of the code generator was largely driven by environmental fac-

tors: existing means of communication between front ernd and code

generator, machine code file formats, system software limitations, and

constraints imposed by the machine architecture. Fortunai.ely, there were a

few degrees of freedom in the design, particularly in the format of the

intermediate code used for communication between front ends and the code

generator.

2.1 t £bmle1.

Given that compilers using the code generator will be composed of a
front end (lexical/syntactic/semantic analysis) and a back end (code
generation), how should communication between the two components be

arranged? There are several points to consider:

" The amount of information passed from front end to back end varies

with the size of the source code program, and (as will be seen

below) the entire source program must be processed by the front end

before code generation can begin. Therefore, no assumptions can be

made about limiting the amount of intermediate code; the com-

munications medium must be capable of queueing a large amount of f

data. 
0

"* Both the medium and the encoding of the intermed.ate information

should be independent of source language and target machine.

"* The programming methodology described in Softar I [Kernighan

1976] has been incorporated in the Software Tools Subsystem [Akin

1980] running on the ICS Prime computers. The Subsystem provides

significant advantages to users willing to follow certain con-

ventions for inter-program communication.

The requirement for a communications medium of unbounded size

cledrly indicates the need for same sort of file on mass storage. The

Software Tools Subsystem particularly encourages files of textual data

(ASCII characters). The requirement for language and machine independence

Georgia Institute of Technology Re-Usable Code Generatcr
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favors the use of character representation of integers, which can be

produced by virtually all I/O support systems and which port easily from

machine Lu machine. (This has the advantage that, Auring debugging, the

compiler writer can view or edit the output of his front end without having

to code speiaal tools for the purpose; unfortunately, the conversion to and

from the teottual representation slows down code generation.) Therefore the

communications channel1 should be one or more temporary text files, and the

encoding technique will be conversion to character representation of

integers.

2.2 am±aLa £

The intemediat3 form (IMF) is the language used by the front end to

communicate the semantics of a compiled program to the code generator. It

may be considered the instruction set of a "virtual" computer, in which

case the code generator is best viewed as a translator of virtual machine

instructions into actual machine instructions.

The design of the IWF breaks down into three parts: the selection

of "operators" (virtual machine instructions), the definition of the

primitive data types on which the operators are used, and the selection of

a structure in which the operators are imbedded.

2.2.1 Z

The cnoice of 1MF operators is essentially unconstrained, but a number

of relevant observations may be drawn from experience:

"Oper tors may be low-level (close to actual machine instructions) or

high-level (more abstract, closer to typical programing language
operations).

"Higher-level operators provide more context information, allowing

more straightforward translation to efficient machine instructions.

For example, a "range check" operator must be implemented with two

compare-and-skip tests on the Prime. There is a clever way of

interlacing the two tests which is valuable for range testing but

practically useless for combining two tests in the general case.

The use of a range check operator in the 14F allows the code

generator to produce efficient code for range checking without wast-

Georgia Institute of Technology Re-Usable Code Generator
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ing time trying to optimize the more common general case (two tests

in a row).

0High-level IMF operators may simiplify code generation algorithms.

Fo, example, the presence of an "if-statement" operator m~ight

guarantee t~ha code generator that control enters statements in the

"else-part" of the "if" from only one point. This would allow trac-

king of* register contents across the basic block 'boundary at the

beginning of the "else-part." Without the "if-statement" operator,

it might be necessary to construct a complete program flow graph to

get the sane information.

aIf an IMF operator is conceptually similar to a high-level language

construct, that construct is easily translated by simply generating

the IMF operator.

2.2.2 DatA 31M

IMF operators express data manipulations and abstractions of control

flow. Additional information is required to describe the data that is to

be manipulated. The situation is complicated by inherently machine-

dependent data definitions that are available in languages like C and Ada.

In the present work, this issue was addressed by parameterizing the

types of data handled by the IMF "virtual machine." This allows machire

dependencies in data description to be restricted to fairly small parts of

the front end.

2.2.3 stucZtrp

[Gries 1971 J discusses a variety of structures for intermediate forms:

triples, indirect triples, quadruples, Polish notation, etc. The tree

structure selected for this project has a number of advantages:

" Trees are easily generated during top-down or bottom-up parses.

0 When expressions are represented as trees, there is no need for the

front end to handle allocation of temporary variables.

" Trees are easily linearized by converting them to Polish notation.

Thus, they meet the re~quirements of the sequential communications

channel between the front end and the code generato~r.

Georgia Institute of Technology Re-Usable Code Generator
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0 Tree formats are flexible; for instance, operators with varying num-

bers of operands are easily accommodated.

a Many algorithms related to code generation are expressed in terms of

operations on graphs; constant folding, operand reordering, commnon

subexpression elimination, and global register tracking are exam.-

pies. These algorithmns may -often be applied to the tree-structured

IMF directly.

The intermediate form devised for this project is tree-structured,

with about 70 operators and seven prii~itive data types (see Appendix A).

It derines an expression-oriented virtual machine language with sufficient

power to support programning languages on the level of C or Pascal. For a

simple example of the intermediate form, see Appendix B; for a tutorial and

a canplete set of examples, see [Akin 1981J.

2.3 DANIl

There are two alternative formats of code generator output: object

code and assembly language source code.

Object code is compact, and comparatively quick to produce on most

machines. On the Primes, unfortunately, object code formats are extremely

complex. Furthermore, Prime has scheduled changes to its object code

formats in the near future, so use of the current formats would guarantee

quick Obsolescence of the code generator.

Assembly language source code is bulky and therefore incurs extra

overhead in production. In addition, the assembler must be invoked to

produce the final object file. Prime's assembler uses a three-pass

algorithm~; the first pass essentially does nothing but recoup information

that was available to the code generator but was, of .*ce331ty, lost in the

translation to assembly source. Thus, the time required for this first

pass is simply wasted. However, use of the assembler insulates the code

generator from details of the object code format.

In the final analysis, there was no choice: the planned changes to

Prime's object code formats make assembly language output the only v_.able

option. Accordingly, the code generator was designed to produce sou'rce

Georgia Institute of Technology Re-Usable Code Generator
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code for a final pass by tne assembler.

2.4 JyAt Sfar L
A few code generator features were mandated by the limitations of

Prime's system software.

For example, the names of all entry points (typically p. ocedure

names) must be listed at the beginning of the object code module in which

they are derined. This implies that the names of all procedures must be

known before any code can be generated in a given module. One approach,

rule• out because of its slowness, would be to scan the entire stream of

IMF, picking out procedure namen& and generating entry point declarations

for them. The approach actually taken requires the front end to generate

another stream of IMF containing procedure names as it makes the first pass

over the source program. The code generator reads this stream first,

produces the list of entry points, then reads the main stream and generates

code.

A major problem with maximum program size follows from the dec, .on

to use Prime's assembler. Despite the 256 megawords of address space

available to each user, the assembler cannot handle a module any larger

than 65,536 words. Although this is a disadvantage from the user's point

of view, it simplifies the code generator since 16 bit arithmetic is

sufficient to calculate any address within a module.

2.5 AJna Ak±Zta==

The Prime P400/P550 architecture ((Prime 1979]) imposed a number of

constraints on code generator functionality.

Each Prime computer supports a number of "addressing modes"

(actually different instruction sets) in order to maintain compatibility

with earlier Prime product lines. The code generator's target addressing

mode is "64V mode," the only addressing mode common to all Prime machines

in the ICS laboratory that is capable of addressing more than 64K words of

data. 64V mode provides an accumulator-based instruction set and segmented

virtual memory.
In 64V mode, only the memory segments referenced by three base

registers are readily accessable. The "stack frame" referenced by register

Georgia Institute of Technology Re-Usable Code Generator
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56 conta!ins tlip activation record for the last procedure irof.-A, the '-link
f rame" referenced by register LB contains static and global variables and
non-reentrant code, and the "procedure frame" referenced by register PB
contcins the reentrant code of the currently-executing procedure. Neithsr
the stack frame nor the link frame can occupy more than one memory segment,
so it is safe for the code generator to use hardware indexing, which fails
on multi-segment data structures.

The accumulator-based architecture of the 64IV mode instruction set
has an advantage: there is only one register for each of the primitive
data types (integer, floating point, etc.), so a very simple register
management algorithmn suffices. Unfortunately, sowe of the registers
physicaily overlap, so problems do arise occasionally.

Most 64IV mode instructions cannot directly address all locations inK memory. Typically, instructions are restricted to a small local address
range and must use indirect addressing to reference memory outside that
range. Since the addresses of external objects cannot be known at compile
time, it must be assumed that they will lie out of the local address range

and thus must be addressed indirectly. It is frequently the case (e.g.,
with procedure calls) that an object must be referenced before it is known
to be internal or external, leaving the code generator with a difficult
decision: should direct addressing be used? There are three possible
approaches: (1) always use indirect addressing, thereby adding
considerable unnecessary overhead to internal object references; (2) scan
the entire IM4F stream and determine which objects are external, then
generate indirect addresses for those objects only; (3) require tbe front
end to supply another stream of IMF listing externally defined objects. As
in the case of the entry points described above, the most viable solution
is to require the additional stream of 1WF.

Georgia Institute of Technology Re-Usable Code Generator
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MAPR 3

Impimantation Overview

"The implementation of the code genep'ator proceeded in four steps:

identification and selection of IM operators, hand generation of machine

code sequences for those operators, development of case-analysis algorithms

to select proper code sequences for generation, and development of simple

optimization algorithms.

3.1 2KAWtC162U

The final set of operators is semantically very close to the

operations of the language C [Kernighan 1978], since one of the initial

purposes of the code generator was to support a C compiler. Several

operators were added to support Pascal-like operations, particularly range
checking, and to provide "escape hatches" for calls to run-time support

routines. All operators were subjected to examination based on the
criteria discussed in Chapter II before selection. The complete set of
operators is listed in Appendix A.

According to the hypothesis advanced in Chapter II, the use of high-

level IMF operators should contribute to the quality of the output code,

since the additional information supplied by the operators contributes to
selection of special cases. The next Implementation step was thus to
develop, by hand, the sequences of machine code that should be generated
for each operator on each type of operand in each context in which the

operator could legally appear.
The selection of code sequences began with hand-coding by the author

and continued with several iterations of examination and improvement by the
author and two expert assembly language programners. Several criteria
guided the code sequence selection process:

Execution time should be winimized. This usually involved careful

study of the 64V mode instruction timings, searching for faster

alternative code sequences.

Code size should be minimized. Where two alternatives were equally

Georgia Institute of Technology Re-Usable Code Generator
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fast or not readily compared in speed, the smaller sequence was

preferred.

*Memory references should be minimized. In practice it has often
been found that a code sequence that is theoretically faster turi,.s
otit to be inferior because it involves two single-word fetches,
rather than an interleaved double-word fetch.

*Since the Primes buffer access to main memory with a high-speed
cache, the number of memory references that can be satisfied from

cache storage should be maximized. As in the case above, unexpected
irregularities in exec.ation times arise because of the pattern of
ac~e eses to the cache memory. If at all Possible, references to a
single memory location should be placed temporally close together,
to maximize the likelihood of finding the contents of that location
in the cache.

*Generation of "overhead code" (like loading the auxiliary base
register to access some location In memory) should be avoided as
long as possible. In many cases the extra instructions are subsumed
by the addressing modes used in subsequent instructions.
Unfortunately, this guideline fails in certain cases, particularly
when code motion optimizations might remove the loading of the
auxiliary base register from a loop.

Code sequences should be matched to their most comnon usages. For
example, most alternatives in multiway branches are selected by case
label values that form a small, dense set of integers. With sone
effort, these branches can Usually be implemented with a few "com-
puted go-to" instructions, which are considerably faster than a
sequence of tests and branches.

IMF operators may appear in a number of different contexts, which
strongly affect the code sequence that must be generated for them. The
code generator recognizes five such contexts internally:

*Reach. In this case, the operator is being used to return .he
address of an object in memory, if possible, and a value in a
register otherwise. This context is of particular use in evaluating
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the left-hand-sides of assignments and the operands of arithmetic
opera.ors. Generally, use of 'he "veach" context implies the
generation of a "memory reference" instruction in the finhi co0.a

sequence.

Load. In this context, the operator is being used to return a value
in a register. T3is is the usual context for obtaining the result
of an arithmetic operator.

Flow. An operator in "flow" context yields a change in the flow-of-
control, rather than a value in a register. This is the context in
which loop termination expressions are evaluated, for example.

Void. Voided operators yield side effects only. This is the
context in which most programming language statements are evaluated;
for instance, an assignment statement has only the side effects of

evaluating both the left and right hand sides, then copying the
value of the right into the object on the left. In "load" context,
the same assignment would also yield the value of the right hand
side.

Argument Pointer (often abbreviated "AP"). AP is the context in
which actual parameters of procedures are evaluated. In such a
context, all operators must yield the address of an object in
memory, even if it is necessary to allocate a section of memory and
copy the result of the operator into it.

Within a given context, an operator will be translated according to
one or more "cases", usually depending on the accessability of its
operands. For example, the "subtract" operator has three cases, depending
on whether its right operand .may be addressed directly, its left operand
may be addressed directly, or neither operand may be addressed directly
(e.g., both are expressions yielding values in registers).

Finally, within a given case in a given context, final instruction

sequences may be devised for each type of data that a given operator may
use. Separate registers and different instructions ave required for the
manipulation of, say, integer and floating point data.

As an example, the final list of code sequences for "load" context

amounted to 6000 lines of text. On the average, there were three cases for
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eaci operator, and five suL~ases for each applicable data type. The

majority of sbcases for the arithmetic operators were quite similar to one

another in form.

Code sequences for the other contexts were ririved directly from the

"load" sequences. In virtually all #.ase, it was necessary only to delete

some code from the "load" sequence or append an instruction or two to

satisfy the requirements for other contexts.

3.3 A19WNS £uM LWA m1

The overall control routine for the code generator is simple:

for each input module

for each entry point

output an entry point declaration

for each static data declaration

reserve link-frame space for a pointer

output an "indirect pointer" to the external object

for each static data definition

reserve link-frane ipace for the object

initialize the object's value

for each procedure

reconstruct the DIF tree

walk the tree, transforming I1F to machine code

optimize the machine code

convert machine code to assembly language source

The heart of the code generator is the procedure handling algorithm. In

the next few sections, it will be examined in detail.

3.3.1 Z.A

The result of syntactic and semantic analysis by the front end is an

intermediate form tree for each procedure in the source program. In order

to transmit a tree to the code generator, the front end traverses the tree,

directly writing the values of INF operator parameters and recursively

writing the contents of subtrees. The result is a copy of the 1MF tree

expressed in prefix Polish notaticn, which is passed through the com-

munications channel to the code generator.
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Within the code generator, the tree-building routines have access to

a table containii & descriptions of each ID operator: its size, the number

and types of its operands, etc. The first step is to read an integer from

the input stream; this gives the DIP operator that appears next in the

input. The descriptor table is then accessed using the operator number as

a key. The table entry gives the size of the tree node, which is then

allocated in tree memory, The remainder of the table entry describes the

operator's parameters, usually strings, integers, or subtrees. Successive

portions of the table entry are interpreted, causing one read from the

input stream for each integer parameter, several reads (one for each

character) for each string parameter, and a recursive call on the tree

builder for each subtree parameter. Values returned for each parameter are

placed in the previously-allocated node, and then the node is returned.

The final result is a duplicate of the procedure tree built by the front
end.

3.3.2 XME nafsintJ-

The code sequence to be emitted for an operator depends on the cont.,ext

in which it appears, the accessability of its operands, and the type of

data being manipulated. Context information is available at the root of

the tres and spread. down to the leaves. Operand accessability is known at

the leaves and induced from the leaves to the root. Data type information

is supp-ied by the front end for every operator, so it is immediately

available.

Postorder tree traversal i;s an efficient algor~thm for propagating

accessability inforlatiLz, frcn the leaves up, and preorder tree traversal

is efficient for propagating context information down froiL the root. A

simple combination of the two forms the framework for procedure code

generati •n.

Internally, generation of code for an l4F subf'ree is accomplished by

calling one of the routines "reach,h "load," "flow," or "void" (ap context

is hatdled as a scecial case within "load"). This causes the root of the
subtree to be visited. Depending on the inherited context and the operator

at the root of the tree, one of the gpneration routines is recursively cal-

led for each operand of the root.
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Each of the code g•neration routines returns inforMatiop about Ute

subtree it just transformed: the location of the result (in memory or in a

register), what registers were used to obtain the result, and a linked list

of the machine instructions generated to calculate the result at execution

time. All of this information comprises the operand acoessability data

needed for uode sequence selection.

Once the operands have beor evaluated, code for the root is

generated. The code sequences for the operands are then linked with the

code sequence for the root. Finally, a tally is made of the registers used

and the entire collection of information is returned.

Appendix B illustrates the code generation process for a mall sub-

tree.

3.3.3 :, zzt

Register tracking forms the basis of the currently implemented

optimizer. Within the code generator, each register is associated with a

state variable that indicates whether the register's contents are "known"

or "unknown." If the contents are known, the register is also associated

with an "address descriptor" that pinpoints the memo y locations that sup-

plied the register's contents.
The optimization process is a pass over the linked list of procedure

code. Whenever possible, general purpose instructions are replaced with

faster special-purpose instructions; for example, "LDA =0" (iced register A

with the value zero) is replaced with "CRA" (clear register A). After

replacement, the effects of the instructions on register contents are

simulated. Whenever a "load register" instruction is encountered, and the
contents or the register to be loaded will not be changed by the instruc-

tion, the instruction is eliminated. If a register must be loaded with a

new value, and that value is known to reside in another register, the load

instruction is replaced with a register-to-register transfer.
The most difficult part of the optimization process is the instruc-

tion simulation. In general, a "leud" instruction causes a register's

state to become known and its contents equal to those of a particular

memory location. Most instructions (e.g. arithoetic operations) cause one

or more registers' contents to become unknown. "Store" instructions may
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alter arbitrary locations in memory, thus invalidating a register/memory

equivalence; the exact effects are dependent on the particular "store"

instruction used. Memory "aliasing" is a partioularly nasty problem; the

optimizer, takes a highly conservative approach and after any store destroys

equivalences based on indirect or indexed addresses.

3.4•T• ,atam

The code generator is written in Ratfor, a Fortran preprocessor

language described in [Kernighan 19761. It is approximately 12,000 lines
in length, of which nearly 7,700 (64%) are devoted to the selection of code

sequences and 700 (6%) to optimization. The remainder is devoted primarily

to input/output, storage management, and simulation of heterogeneous data

structures with Fortran arrays.

Although large, the code generator is relatively easy to manage,

since most of the Ratfor code deals with independent case analyses. This

is reflected in the subprogram call tree, reproduced in part below:

module
initialize
generate,_entrWes
generate•static.stuff
generate.procedures

reach
reachtLassign
... (approximately 6 other routines)
reach.seq
iced

load
loedaddaa

load, reach

ied_Lif
flow, load, reach

... (approximately 60 other routines)
ioad_xor

load, reach
flow

fl ow_eq
load, reach

... (approximately 12 other routines)flow_switch

load, reach, void
load

void
void_addaa
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load, reach
(approximately 4 other routines)

void.seq
load, reach

load
Optimize
put:binstr

The cail tree is broad, but not particularly deep. The bulk of the code is

in the descendants of 'load," and these routines rarely interact with one

another.

On the average, a "load" routine is about 77 lines of code.

Although this is larger than .)ptlmal, most "load" routines are easily com-
prehended, since they are str iAghtforward case anmlyses. No attempt was

made to eliminate duplioL ,ed code. A sample code generation routie is

presented in Appendix D.
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Experiene

The code generator has been used to implement two compilers: a full-sale

compiler for the language C and a demonstration compiler fcr a small teach-

ing language. The C compiler runs almost twice as fast as Prime's Fortran

77 and Pascal compilers (700 lines par minute vs. 400 lines/minute, on a

Prime 550). It is also somewhat amaller (in terms of code size) than

Fortran 77 or Pascal (2 segments vs. 4 and 3 se3uents, respectively).

Hand inspections and informal benocharks indicate that the code produced is

generally superior to that produced by Pascal, PL/I, and Fortran 77; in

particular, fewer base register loads are generated, and operations on pac-

ked data structures are performed without resorting to the field manip.ala-

tion instructions.

Examination of the code generator's output indicates a few aeas

that need improvement, though. The most obvious is register tracking

across basic block boundaries, particularly in loops. Truly excellent code

can be produced whenever an arit•metic loop control variable can be pushed

into an index register, but present optimization forces stores and loads at

the boundaries of the basic block containing the loop body.

The intermediate form could stand a few modifications. For example,

there is no way to specify that er array is 65,536 words long. This is no

great problem at the moment, but should be fixed in the future. As another

example, comparison of structure or array operands requires information on

the length of the operands. There is presently no space reserved in the

IMF comparison operators for this information.

Several informal measurements of code generator perfomance have

been made. Initially, almost 50% of code generation execution time was

devoted to reading the ASCII textual input. Special-casing the character-

to-binary conversion and eliminating some logical redundancy within the

input routine reduced execution time by 30%. Presumably, elimination of

the character-to-binary conversion would speed up execution even morm.
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tav, n 5

Conclusions

The separation of lexical/syntactic/semantic analysis from code generation

and the development of a standard "intermediate form" allows many compilers

to use the same code generator.

Use of the code generator significantly reduces the wounmt of effort

required to implement compilers on Prime computers.

The case-analysis approach to code generation is effective, at least

when compared to the algorithms used in existing compilers for Prime ccam-

puters. As a consequence, however, the code generator is a very large

piece of software, with a great number of almost-identical runs of code.

The code generator's effectiveness has been demonstrated for a C

front end, but it seems likely some additions must be made to make it

equally effective for Pascal and other languages.
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CHAPTER 6

Recommendations

There are several areas in which the code generator might be improved.
Many of the special cases that are currently handled by open code

essentially involve emitting special instructions when an operand has a

particular value. Clearly these could be encoded in a table, with

consequent reduction in code generator size and complexity (although pos-
sibly increasing run time, as well).

Data packing is not treated properly in the current implementation.

The only operator that explicitly deals with packed data is the FIELD

operator, and it. must be inserted in the proper places by the front end.

The definition of FIELD is machine-dependent in the extreme. A better
approach wculd be to generalize the concept of "address descriptor"b used

throughout the code generator, allowing any operator to take packed

operands directly. A few IMF operators (INDEX and SELECT, especially)
would need to be extended to take full advantage of the added generality.

There are several special cases (for instance comparison of fields to
constants) which should be exploited.

In the intermediate form, data types are restricted to integer,

unsigned, long integer, long unsigned, single precision floating,, double

precision floating, and stowed (structures and arrays). Machine indepen-
dence could be improved by-using Precision and range specifications like

those available in Ada.

The code generator is written in Ratfor, a FORTRAN preprocessor
language. This has the advantage of considerable support from the Software

Tools Subsystem running on the ICS Prime computers, and it makes use of the

fast FORTRAN 66 compiler. However, the lack of pointers and heterogeneous
data structures in FORTRAN makes the code slower and more obtuse than it

needs to be. If possible, the code generator should be re-written in a
more reasonable language. C would be a good candidate; Pascal would also

be a good choice if a better compiler implementation becomes available.
One 0or the important features of block structured languages that the

code generator does not directly support is that of nested scopes. This

feature requires a "display" of pointers to currently-active stackc frames.

Although the display can be conveniently fabricat~ed with existing IMF
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operators, the present storage allocation algorithm and forward reference
resolution techniques are inadequate. For example, to process a procedure
B nested in a procedure A, the off sets of A's variables in its stack frame
must be knowln. This will not be the case unless code for A has been
generated. Unfortunately, this cannot be done unless the code for B has
been queued somewhere, since the code for B precedes the code for A. Thus
there is a circular chain of dependencies. One possible solution would be
for the front end to allocate space for A's variables, then provide the

offsets for use by B and let the code generator handle relocation when it
actually generates code for A. This can be done at present by treating all
local variables as members of structures, but this imposes an unacceptable
amount of machine-dependence on the front end.

The present optimization algorithm is not adequate. Global propaga-
tion of register state information would be very valuable, particularly in
arithmetic loops. The register tracking scheme now equivalences a register
and one location in memory; a better approach would be to build
"equivalence classes" containing all registers and memory locations known
to have the same value, providing more opportunities to eliminate load
instructions and perhaps providing enough information to hoist code fromi
loops.

The 321 mode architecture available on the Prime 550 and higher-
numnbered models is a multi-register architecture differing somewhat from
6~4V mode. It would be interesting to see if the ideas used in this code
generator could be applied to a 321 mode code generator, or if the same

intermediate form would be useful.

The arrival of a VAX 11/780 at ICS within a year poses a similar
question, since the VAX is a general register machine. Could a code
generator be devised for the VAX, allowing cross.-compilation from VAX to
Prime and vice versa? Would the intermediate form prove portable enough to
permit retargeting and transport of compilers? Since the VAX and the Prime
550 are both virtual memory machines with a natural word width of 16 bits,
and there are very few other explicit machine dependencies in the
intermediate form, it seems likely that an attempt to implement a retar-
getable compiler would be successful.
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APPENDIX A

Intmediate Fors

The following list enumerates the primitive data types supported by the

intermediate form. For a more complete description, see [Akin 1981].

INTMODE 16-bit signed integer

LONGLINT.JVDE 32-bit signed integer

UNSODE 16-bit unsigned integer

LONCJUNS.MDDE 32-bit uns'igned integer

FLOAT.wMODE 32-bit floating point

LONGFLOATJ4ODE 64-bit floating point

STOWED.MODE structure or array data

The follawing list completely enumerates the intermediate form

operators. For complete descriptions, see [Akin 1981).

ADDAA&OP add, assign result to left operand

ADDOP add

ANDAAOP logical and, assign result to left
AND.OP logical and

ASSIGNOP copy value

BREAKOP break out of a loop or case

CASEOP case alternative in a switch

COMPLJOP one' s-comp!ement

CONST.LOP defi)e constant

CONVERT.OP convert data modes

DECLARE STAT..OP declare an external static object

DEFAULTO? default alternative in a switch

DEFINELDYNIOP define a dynamic local object

DEFINESTATOP define a static local or global object

DEREFOP dereference a pointer

DIVAAOP divide, assign result to left operand

DIV.•OP divide

DOJOOPOP test-at-the-bottom loop

EQMOP test for equality

FOFLLOOP.,OP generalized loop

GLOP test for greater-or-equal
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GOTOOP juzno to label

GT.OP te " greater-than
IF.OP conditional statement/expression

INDEX.OP select an array element

INITIALIZEI.OP initial value of an object

LABELOP target cf a jump

LF..OP test for less-than-or-equal-to

LSHIFTAA..OP shift left, assign result to left

LSHIFT.TOP shift left

LT..OP test for less-than

MDDULFOP beginning of input module

MULAAOP multiply, assign result to left

MULOP multiply

NEGOP two's-complement
NEXTOP force next loop iteration

NFOP test for inequality

NOTrOP logical negation

NULI.OP null
OBJECT.,OP reference a variable

ORAAOP logical or, assign result to left

Ok OF logical or

POSTDEQOP C postdecrement
POSTINCQOP C postincrement

PREDECQOP C predecrement

PREINQOP C preincrement

PROCQCAL1L.,ARQ.OP procedure call argument

PR.•QCALL.COP procedure call

PROC.,DEFNARGOP procedure formal parameter

PROCDEFNOP procedure definition

REFTO.OP generate reference to object

REMAAOP remainder, assign result to left

REMtOP remainder
RETURfLOP return from procedure

RSHIFTAAOP right shift, assign to left operand

RSHIFT.OP right shift
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SAND..OP sequential (short-circuit) and

SELECTOP select field of a structure

SEQOP left-to-right sequence

SOROP sequential (short-circuit) or

SUBAAOP subtract, assign result to left

SUB.•OP subtract

SWITC•LOP multiway branch

UNDEFINFUDYNMtOP undefine local dynamic object

WHILF.LOOP..OP test-at-the-top loop

XORAAOP exclusive-or, assign to left operand

XOROP exclusive-or

ZEROINITIALIZER. OP initialize object to zero

FIELDOP extract bit field from a word

CHECK.RANGF.OP check within range

CHECKXUPPEPLOP check less than upper bound

CHECQLOWELOP check greater than lower bound
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APPEDIX B

IW Transformtion

The following tables are excerpted from the case analyses of the IMF

operators ADD.OP and SUB-OP. To generate cod',% the cases are examined

left-to-right. The phrase "A not in right regs" may be translated into

English as "Register A is not used during the evaluation of the right

operand." Note that these operators are members of the same operator class

(reversible dyadic one-register) and have very zimilar code sequences.

REACH CONTEXT/ADD.OP/INTEGER

A not in right regs I A not in left regs A in both regs
-------------- - --------

load left I load right load right
reach right I reach left allocate temp
ADD right I ADD left STA tamp

I Iload left
I IADD temp

I'deallocate temp

REACH CONTEXT/ SUB.OP/ INTEGER

A not in right regs I A not in left regs I A in both regs
---------- I--------- --- -

load left 1 load right I load right
reach right I reach leftI allocate temp
SUB right I SUB left I STA temp

STCA I load left
I I SUB temp

I deallocate temp

Consider the generation of code for the following program fragment:

integer a, b, c;
begin

.*.a - (b + c)...
end

The following intermediate form code would be generated by the front end:

62 SUBOP
1 INTJMODE
40 OBJECTOP
1 INTJMODE

object id for 'a'
2 ADD..OP
1 INT.MODE
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40 OBJECT.OP
1 INTMODE

object id for 'b'
4o0 BJECT.OP
1 INT-MODE

object id for 'c'

The code generation process for this subtree might be traced as follows:
Control enters through "reach" at the subtree rooted with SUBOP.

Following the definition of SUB.OP that is available internally, "reach"

invokes itself recursively to evaluate the left operand.

The left operand is a simple object, which is reached without
difficulty. "Reach" returns an address descriptor for the object (say,

"1SB%+20"), a null set of registers (none were used), and a null list of
code (none was generated).

"Reach" invokes itself recursively to evaluate .he right operand of

the SUBLOP.

The right operand is an ADDIOP. "Reach" invokes itself recursively
to evaluate the left operand of the ADD.

The left operand is a simple object. "Reach" returns an address
descriptor (say, "SB%+30"), a null zet of registers, and a null code list.

"Reach" invokes itself recursively to evaluate the right operand of

the ADD.

The operand is a simple object. "Reach" returns an address descrip-
tor (say "SB%+40"), a null set of registers, and a null code list.

Control returns to the instantiation of "reach" at the ADD.•OP. The
case analysis for ADD is consulted; the first case applies. "Reach"
returns the result "in register," a set of registers containing register A,
and the code list "LDA SB%+30; ADD SB%.+40."

Control returns to the instantiation of "reach" at the SUB.•OP. The

case analysis for SUB is consulted; since the right operand used the

register A, the second case applies. "Reach" returns the result "in
register," a set of registers containing only register A, and the code list

"LDA SB%+30; ADD SB%+40; SUB SB%+20; TCA."
At this point, good code for the entire subtree has been generated.

It may stand alone or be used by some other code tree of which this subtree

was a part.
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APPENDIX C

User-Oriented Docauntation

[Akin 1981) is a compendium of information pertaining to the use of the

code generator, rather than its internal structure. Its size (121 pp.

single-spaced) precludes its inclusion here. The following paragraphs

describing the contents of the fLa.L& LuJk are excerpted from it.

The first chapter of this Guide is the 2. The
Ove.M±w is a brief summary of the design and construction of
the code generator. This chapter may be of general interest,
but it is not necessary to read it in order to learn to use the
code generator.

The fd aa ILUM chapter describes the location
of the code generator and its associated run-time support
libraries, as well as the Software Tools Subsystem commands
necessary to access them. Recommended procedure is to study
this section, then generate command language programs to do the
low-level file access operations.

a Dta = ZoMats gives a bird's-eye view of the
formats of the three code generator input streams. This chap-
ter merits some study, although it is supplemented by the

*d £ZMPIM.
The three operator definitions chapters (.O-raJnr-

am= ±f ZA =&~1 LA &m, arm= DA=J&U6

•1U±.±gnn) provide a detailed reference for the intermediate
form operators interpreted by the code generator. One or two
readings through this chapter are desirable; thereafter, it can
be used as a reference with the fMa .aa Idnr and the
Table of Contents used as entry points.

The .ZtMg £zamnJps are comprised of several short
(but complete) programs written in the language C. These exam-
ples include the original C code, annotated versions of the
three code generator input streams, and an annotated listing of
the code generator's assembly language output. The chapter
should be useful in learning how the various intermediate form
operators work together, and may be used as a reference when
building a new front end.

'Drift' is a very small expression-based language whose
structure closely mimics the code generator's internal world-
model. M& ft s13 a complete, working compiler
using the code generator as a back-end. It serves as an exam-
ple of one way to construct a front-end for the VCG.

For ease of reference, all the intermediate form
operators have been organized by subject in the T.tadisitt
.EM &gr/ une~tkhtn Inde. Typically, one would look up
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some function (e.g., "subscripting") in the Tj•k, find thename of the appropriate intermediate form operator (e.g.,
INDEJLOP), then look up that operator in the table of contents
to find its complete description.

Georgia Institute of Technology Re-Usable Code Generator



Appendix D Code Generation Routine Page 31

APPMIX D

Code Generation Routine

The following subprogram generates code for addition of two values in a

"load" context. It is typical of the descendants of the code generator

routine "load."

# load.,.add - load value of sum of two subexpressions

ipointer function loadmadd (expr, regs)
tpointer expr
regset regs

include VCQCOMMON # global variables

logical safe

regset lregs, rregs, opreg

ipointer 1, r
ipointer seq, ld, st, gern..jr, reach

integer lres, rres, lad (ADDRUDESC6SIZE),
rad (ADDPDESC4.SIZE), opsize, opins,
tad (ADDRDESC..SIZE)

select ('Tem (expr + 1)) M data type
when (INTjMDDE, UNSMODE) {

opreg = )REG
opsize = 1
opins = ADDINS}

when (LONGINT,1MDDE, LONG.JJNSJMDDE) f
opre = L. REG
opsize = 2
opins = ADLINS}

when (FLOAT.MODE) {
opreg = F.LREG
opsize = 2
op!ns = FAD.INS}

when (LONQJOATJMDE) {
opreg = LF.REG
opsize = 4
opins = DFAD.INS}

else
call panic ("ADD.OP has bad data mode (0i)*n"p,

Them (expr + 1))
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1 = reach (Tmem (expr + 2), iregs, lres, lad)
r reach (TMan (expr + 3), rrcgs, rres, rid)

select
when (safe (opreg, rregs)) # right doesn't use opreg

load..add = seq (1,
id (opreg, ires, lad),
r,
genr•r (opins, rid))

when (safe (opreg, iregs)) # left doesn't use opreg
load.add = seq (r,

Id ,opreg, rres, rid),
i,
gerinr (opins, lad))

else { # both sides use opreg
loadcadd = seq (r, ld (opreg rres, rid))
call alloetemp (opsize, tadS
loacLadd = seq (load.,add,

3t (opreg, tad),
i,
id (opreg, ires, lad),
gerajur (opins, tad))

call free.temp (tad)}

regs= or (opreg, or (iregs, rregs))
return
end
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